Mechanisms underlying distension-evoked peristalsis in guinea pig distal colon: is there a role for enterochromaffin cells?

نویسندگان

  • Nick J Spencer
  • Sarah J Nicholas
  • Lucy Robinson
  • Melinda Kyloh
  • Nicholas Flack
  • Simon J Brookes
  • Vladimir P Zagorodnyuk
  • Damien J Keating
چکیده

The mechanisms underlying distension-evoked peristalsis in the colon are incompletely understood. It is well known that, following colonic distension, 5-hydroxytryptamine (5-HT) is released from enterochromaffin (EC) cells in the intestinal mucosa. It is also known that exogenous 5-HT can stimulate peristalsis. These observations have led some investigators to propose that endogenous 5-HT release from EC cells might be involved in the initiation of colonic peristalsis, following distension. However, because no direct evidence exists to support this hypothesis, the aim of this study was to determine directly whether release of 5-HT from EC cells was required for distension-evoked colonic peristalsis. Real-time amperometric recordings of 5-HT release and video imaging of colonic wall movements were performed on isolated segments of guinea pig distal colon, during distension-evoked peristalsis. Amperometric recordings revealed basal and transient release of 5-HT from EC cells before and during the initiation of peristalsis, respectively. However, removal of mucosa (and submucosal plexus) abolished 5-HT release but did not inhibit the initiation of peristalsis nor prevent the propagation of fecal pellets or intraluminal fluid. Maintained colonic distension by fecal pellets induced repetitive peristaltic waves, whose intrinsic frequency was also unaffected by removal of the submucosal plexus and mucosa, although their propagation velocities were slower. In conclusion, the mechanoreceptors and sensory neurons activated by radial distension to initiate peristalsis lie in the myenteric plexus and/or muscularis externa, and their activation does not require the submucosal plexus, release of 5-HT from EC cells, nor the presence of the mucosa. The propagation of peristalsis and propulsion of liquid or solid content along the colon is entrained by activity within the myenteric plexus and/or muscularis externa and does not require sensory feedback from the mucosa, nor neural inputs arising from submucosal ganglia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI) transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT) receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does no...

متن کامل

Regional Difference in Colonic Motility Response to Electrical Field Stimulation in Guinea Pig

BACKGROUND/AIMS In isolated guinea-pig colon, we investigated regional differences in peristalsis evoked by intrinsic electrical nerve stimulation. METHODS Four colonic segments from mid and distal colon of Hartley guinea pigs, were mounted horizontally in an organ bath. Measurement of pellet propulsion time, intraluminal pressure, electrical field stimulation (EFS; 0.5 ms, 60 V, 10 Hz), and ...

متن کامل

Peristalsis and fecal pellet propulsion do not require nicotinic, purinergic, 5-HT3, or NK3 receptors in isolated guinea pig distal colon.

The neuronal mechanism by which distension of the colon triggers peristalsis and the propulsion of colonic contents is incompletely understood. In this study, we used video imaging and spatiotemporal mapping techniques to investigate the neuroneuronal mechanisms underlying peristalsis in isolated guinea pig distal colon. In direct contrast to previous studies, we found that hexamethonium (100 m...

متن کامل

Peristalsis and propulsion of colonic content can occur after blockade of major neuroneuronal and neuromuscular transmitters in isolated guinea pig colon.

We recently identified hexamethonium-resistant peristalsis in the guinea pig colon. We showed that, following acute blockade of nicotinic receptors, peristalsis recovers, leading to normal propagation velocities of fecal pellets along the colon. This raises the fundamental question: what mechanisms underlie hexamethonium-resistant peristalsis? We investigated whether blockade of the major recep...

متن کامل

Neurogenic and myogenic motor activity in the colon of the guinea pig, mouse, rabbit, and rat.

Gastrointestinal motility involves interactions between myogenic and neurogenic processes intrinsic to the gut wall. We have compared the presence of propagating myogenic contractions of the isolated colon in four experimental animals (guinea pig, mouse, rabbit, and rat), following blockade of enteric neural activity. Isolated colonic preparations were distended with fluid, with the anal end ei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 301 3  شماره 

صفحات  -

تاریخ انتشار 2011